h免费在线观看_毛片网站免费_国产va免费精品观看精品视频_亚洲色图激情小说_素人fc2av清纯18岁_国产对白叫床清晰在线播放_91麻豆6部合集magnet_日韩免费在线观看视频_欧美片一区二区_av午夜在线

15601689581
當前位置:主頁 > 技術文章 > 用于等效時間采樣應用的空間多路單腔雙光梳激光器

用于等效時間采樣應用的空間多路單腔雙光梳激光器

更新時間:2022-05-24 點擊次數:3154

 

1.介紹


雙光學頻率梳(簡稱雙光梳)[1]的概念在光頻梳被提出后不久被引入[2-4]。在時域上,雙光梳可以理解為兩個相干光脈沖序列,它們的重復頻率有輕微的偏移。自問世以來,雙光梳光源及其應用一直一個重要研究課題[5]。雙光梳光源與早期用于泵浦探測測量的激光系統有許多相似之處。特別是,利用兩種不同重復頻率對超快現象進行采樣的想法,早在20世紀80年代就已經通過等效時間采樣概念的演示進行了探索[6,7]。在這種情況下,通過frep/ 的因子,超快動態過程在時域中被縮小到更慢的等效時間。這里frep是采樣頻率,是采樣頻率與激發重頻的差值。這個概念很快通過一對相互穩定的鎖模激光器實現,通常被稱為異步光采樣(ASOPS)[8]。雙光梳方法和ASOPS激光系統的一個顯著區別是兩個脈沖序列鎖在一起的相位和定時的精度。因為雙光梳鎖模的發明,特別是在一個自由運行的激光腔產生兩個光頻梳,這個邊界已經變得模糊。這種激光器最初是在光纖[9]和固態[10,11]增益材料中實現的,隨后出現了大量的激光腔多路復用方法[12]。由于脈沖在同一腔內循環,它們經歷類似的干擾,導致相關的噪聲特性,這對于實際應用[13]來說已經足夠了。類似地,與電子鎖定異步光采樣ASOPS系統相比,由于共腔結構和鎖模激光器振蕩器的優秀無源穩定性,有降低時間抖動的潛力[14,15]。此外,由于這些系統顯著降低了復雜性(一個振蕩器,沒有復雜的鎖定電子設備),它們可以在雙光梳激光器通常無法達到的新應用領域實現實際測量。另一方面,自由運行的激光器容易受到相對光學相位漂移和兩個脈沖序列之間重復頻率差異的影響,這必須加以考慮。

 

迄今為止,單腔雙頻梳激光器的運行通常是在激光設計或性能上的折衷。例如,將無源雙折射晶體插入腔中[10],用雙折射增益元件對偏腔線[16],分割激光增益帶寬[17],或利用環形腔的雙向運行[9,11]。最近,在高功率鎖模薄片激光器結構中也研究了涉及獨立腔端鏡的空間分離模概念[18,19]。然而,在這些新的實現中,并不是所有的內腔組件都是共享的以便降低常規噪聲抑制。

 

在這篇文章中,我們提出了一種激光腔多路復用的新方法,通過在表面插入一個具有兩個獨立角度的單片器件,例如雙棱鏡,使空間分離模式存在。因此,通過在適當的位置安裝雙棱鏡,可以將對單光頻梳操作*優的空腔適應為雙光頻梳空腔。利用這種方法,在80 MHz重復頻率,在脈沖小于140fs的情況下,我們從單個固體激光器腔中獲得了2.4 W的平均功率。兩個光頻梳的重復頻率差可在[- 450Hz, 600Hz]范圍內調節。表征得到脈沖之間的相對時序噪聲為僅為光周期的一小部分:在[20 Hz至100 kHz]的綜合帶寬下為2.2 fs。這是迄今為止報告的在這個頻率范圍內自由運行的雙梳激光器中zui 低的相對時間噪聲。此外,我們在多路復用元件上應用壓電反饋來抵消低頻環境干擾和漂移,因此我們可以在超過5小時內實現標準偏差為70的重復頻率差穩定性。

 

2.諧振腔設計與振蕩器性能


 

1.png

圖1所示。(a)激光腔布局。泵浦使用一個980nm多模二極管。DM:泵浦/激光二色性,OC:激光輸出耦合器, 5.5%的激光透過率,泵浦光高透過率。增益介質是摻雜4.5%的Yb:CaF2晶體 [20]。該腔采用具有介電介質頂部涂層的多量子阱SESAM,獲得高飽和通量Fsat=142?J/cm2,調制深度?R=1.1%。(b)激光輸出功率和脈沖持續時間隨總泵浦功率的變化。

 

圖1(a)顯示了我們的自由運行雙光頻梳激光腔的布局。我們使用多模泵浦二極管和端泵浦腔結構,類似于我們之前報道的偏振復用雙梳狀激光器的配置[20,21]。然而,與過去的報道相反,在有源元件,即增益晶體和半導體飽和吸收鏡(SESAM)上的空間分離是通過插入一個具有高度反射涂層的雙棱鏡來獲得的。通過使用一個頂角179°的雙棱鏡,我們獲得了在增益介質上模式分離1.6 mm和在SESAM上模式分離1 mm。圖1(b)顯示了掃描泵浦功率時單個光梳的性能。該孤子鎖模激光器的最大工作點對應2.4 W平均輸出功率,脈沖持續時間分別為138 fs(comb1)和132 fs(comb2),激光器的光對光效率為40%。

 

我們得到了兩個光頻梳的自啟動鎖模。在最高輸出功率下的激光輸出診斷如圖2(a-b)所示,這表示基模鎖定是很干凈的。壓電致動器可以在短時間內連續調節雙棱鏡的橫向位置,把其安裝在一個平移臺上,該平移臺可通過壓電致動器進行大范圍的任意步進調節。雙棱鏡的平移可以調整兩個光頻梳的重復頻率差,從-450 Hz到600 Hz,對激光輸出性能的影響可以忽略不計(圖2(c))。在較大的行程時,雙棱鏡頂點上的模削效應導致輸出功率的降低。

 

2.png

圖2所示。(a)用光譜分析儀(分辨率設置為0.08 nm)測量對數尺度下的激光輸出光譜。(b)用微波頻譜分析儀分析快速光電二極管產生的光電流的歸一化功率譜密度。插圖顯示放大的兩個射頻梳的一次諧波。(c)雙棱鏡側面不同位置的重復頻率差異。

 

3.噪聲特性


接下來,我們評估了共腔方法獲得兩個脈沖序列與低相對時間抖動有效性。首先,我們進行相位噪聲特性,試圖獲得每個單獨的脈沖序列的絕對時間抖動。我們在一個快速光電二極管(DSC30S, Discovery Semiconductors Inc.)上檢測每個脈沖序列,并選擇帶有可調諧帶通濾波器的第6個重復頻率諧波。該信號通過信號源分析儀(SSA) (E5052B, Keysight)進行分析。得到的相位噪聲功率譜密度(PSD)和綜合時間抖動如圖3所示。從測量中我們看到,每一個單獨的脈沖序列的絕對時間抖動非常小,相位噪聲PSD看起來幾乎相同。為了測量兩個脈沖序列之間的絕對時間抖動的相關性,我們開發了一種基于梳齒跳動的相對時間抖動測量技術,該技術使用了兩個單頻連續激光器[22]。這種相對時間抖動測量技術可以揭示任意重復頻率差下自由運行的雙梳激光的不相關噪聲。得到的不相關的相對時序抖動在圖3中用黑線表示。我們發現相對時間抖動平均比絕對時間抖動低25dB,這表明由于單腔結構,有很好的共相位噪聲抑制。集成的相對定時抖動為2.2 fs [20 Hz, 100 kHz]。這表明,即使在較長的數據采集時間內,也可以從自由運行的激光腔獲得亞周期相對定時抖動。

 

3.png

圖3所示。(a)使用信號分析儀測量每個脈沖序列的絕對(紅色和藍色)時序噪聲。使用[22]中描述的方法測量的兩個脈沖序列之間的相對時序抖動(黑色)。(b)時序噪聲曲線積分得到的時序抖動。

 

我們開發了這種激光器用于等效時間采樣應用,如泵浦探測光譜和皮秒超聲[20]。因此,我們還沒有詳細研究該光源如何適用于需要長期相對光學相位穩定性的高分辨率雙梳光譜。在50毫秒的采集周期內,可以觀測到一些射頻梳齒結構。然而,精確的雙光梳光譜學應用仍然依賴于用一個或多個連續波激光器跟蹤光學相位波動,例如通過自適應采樣方法,如[23]中的展示。從圖3可以觀察到,在700 Hz和1600 Hz附近有幾個噪聲峰值,這可能是由機械共振引起的,因此可以通過仔細的光學機械優化來消除。然而,這些共振降低了兩個脈沖序列之間的相位相干性。由于較大的光帶寬和相對較低的80 MHz的重頻,混疊條件要求在500 Hz以下的重頻差范圍內使用。在這樣的低頻率下,機械噪聲比如來自上述諧振,將影響相互相位相干性。更適合自由運轉雙光梳光譜的結構包括更高的重頻和重頻差異,如[13,22],在此機制中提出的技術探索將是未來工作的主題。在這篇文章中,我們著重于將這種新光源應用于泵浦探測光譜的應用,在這里,激光的峰值功率可以用來直接激發非線性過程。80MHz的重頻可以實現12.5 ns的大延遲掃描范圍,超低的相對定時抖動可以用于精確的時間軸校準。

 

激光相對強度噪聲(RIN)是任何快速采樣應用的關鍵參數之一。我們在以下高動態范圍測量配置中分析了我們的激光器的RIN。我們使用一個光電二極管,每個光頻梳的平均梳齒功率同時設定為10mW。為了獲得RIN光譜,我們使用SSA進行基帶測量。首先,我們用一個低噪聲跨阻抗放大器(DLPCA-200, Femto)測量低頻分量(<200 kHz)。為了測量更高頻率的分量,我們用一個偏置TEE (BT45R, SHF通信技術AG)分割信號的交流和直流部分。交流部分用低噪聲電壓放大器(DUPVA-1-70, Femto)放大。將兩個測量值拼接在一起,得到每個光頻梳的完整RIN譜,如圖4所示。我們發現每個光梳的綜合RIN值< 3.1х10-5 [1 Hz, 1 MHz]。

 

4.png

圖4所示各光梳的相對強度噪聲譜。根據光電二極管的規格和測量的輸入功率計算散粒噪聲極限。

 

4.等效時間采樣應用


為了使激光器應用于泵浦探測光譜應用,我們將它與一個光參量振蕩器(OPO)的一個輸出光束耦合。OPO能夠實現波長的多色泵浦探測測量。此外,由于OPO是同步泵浦,兩個脈沖序列之間的相對時間保持不變。我們用ppln晶體(HC Photonics)設計了一個信號諧振在1600nm的OPO。用2 W輸出的comb1泵浦可獲得876 mW的信號光。同時,我們還產生了OPO信號的二次諧波,以獲得800 nm的光,測量脈沖周期為151 fs,平均功率為390 mW。從振蕩器輸出的comb2可輕松倍頻獲得526 nm的光,使該激光源成為各種波長下理想的光譜學工具。

 

為了在環境發生變化時也能獲得重頻差的長期穩定性,我們實現了一個慢反饋閉環。comb1和comb2的部分功率發送到基于BBO的光學互相關器。我們使用一個頻率計數器,通過計算互相關信號之間的時間來跟蹤重頻差的波動,類似于[20,21]中使用的方法。為此,我們使用了一個定制的FPGA模塊,該模塊能以100Hz或更高的采集速率下獲取comb1和comb2的重頻差,精度優于10-6。記錄的重頻差信號在計算機上處理,通過調節施加到壓電致動器上的電壓來對復用元件進行校正。電壓信號以大約?frep的速率更新。

為了驗證兩組多色脈沖序列的相對長期穩定性,我們用另一種光學互相關裝置測量重頻差,如圖5(a)所示。我們將OPO倍頻輸出(800 nm,comb1)與直接激光輸出(1052 nm,comb2)相互關聯。在超過5小時的時間窗口中,我們發現重頻差波動標準差為70,如圖5(b)所示。

 

5.png

圖5所示。(a)帶兩個光學交叉相關器(XCORR)的多色等效時間采樣裝置。XCORR 1用于向激光提供慢反饋,XCORR 2用于執行環外測量。(b)使用XCORR 2的長期重頻差穩定性。設置為300Hz。

 

5.結論


我們展示了一種新穎的激光腔復用方法,該方法允許在同一振蕩器中存在兩個空間分離的準共徑腔模式。我們可以實現同步的模式鎖定,每路輸出脈寬少于140 fs,平均功率超過2.4 W。我們還描述了綜合帶寬20 Hz到100 kHz范圍內的相對定時抖動在亞周期范圍內。我們進一步將這種強大的固態激光器與OPO耦合,以獲得泵浦探測采樣應用的多色光輸出配置。為了消除任何可能改變重復頻率差的緩慢環境漂移,我們在雙棱鏡位置上實現了一個基于緩慢交叉校正的反饋環路,使我們獲得了長期性能良好的雙光梳。因此,我們的系統結合了這兩種方法的優點:共腔雙光梳激光器的高被動穩定性和簡單性,以及對鎖定激光系統漂移的免疫性。我們的結果證明了新的激光腔多路復用方法的實用性,并顯示其在泵浦探測和等效時間采樣應用中的巨大潛力。

 

關于生產商K2Photonics:

 

1650959184767710.png

K2Photonics是瑞士蘇黎士聯邦理工學院量子電子學研究所旗下公司旗下衍生公司。其把新的基于單腔雙光梳激光器研究的新成果進行商業化,為泵浦探測和異步光采樣ASOPS等應用客戶提供理想光源。上海昊量光電作為K2Photonics的中國代理,為您提供專業的選型以及技術服務。對于單腔雙光梳激光器有興趣或者任何問題,都歡迎通過電話、電子郵件或者微信與我們聯系。

 

關于昊量光電:

昊量光電  您的光電超市!

上海昊量光電設備有限公司致力于引進guo 外先 jin性與創新性的光電技術與可靠產品!與來自美國、歐洲、日本等眾多zhi 名光電產品制造商建立了緊密的合作關系。代理品牌均處于相關領域的發展前沿,產品包括各類激光器、光電調制器、光學測量設備、精密光學元件等,所涉足的領域涵蓋了材料加工、光通訊、生物醫療、科學研究、國防及前沿的細分市場比如為量子光學、生物顯微、物聯傳感、精密加工、先進激光制造等。

我們的技術支持團隊可以為國內前沿科研與工業領域提供完整的設備安裝,培訓,硬件開發,軟件開發,系統集成等優質服務,助力中國智造與中國創造! 為客戶提供適合的產品和提供完善的服務是我們始終秉承的理念!

 

(本文譯自Spatially multiplexed single-cavity dual-comb laser for equivalent time sampling applications(J. Pupeikis,1,* B. Willenberg,1,* S. L. Camenzind,1 A. Benayad,2 P. Camy,2 C. R. Phillips,1,* And U. Keller1    

1 Department of Physics, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland 2 Centre de Recherche sur Les Ions, Les Matériaux et La Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard Du Maréchal Juin, 14050, Caen Cedex 4, France)

 

參考文獻

1.S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766–768 (2002).

2.H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phasecontrol: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69,327–332 (1999).

3.D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-EnvelopePhase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288, 635–639(2000).

4.A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz,"Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740–743 (2000).

5.I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414 (2016).

6.K. J. Weingarten, M. J. W. Rodwell, H. K. Heinrich, B. H. Kolner, and D. M. Bloom, "Direct electro-opticsampling of GaAs integrated circuits," Electron. Lett. 21, 765 (1985).

7.K. J. Weingarten, M. J. W. Rodwel, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits,"IEEE J. Quantum Electron. 24, 198–220 (1988).

8.P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, "Pump/probe method for fastanalysis of visible spectral signatures utilizing asynchronous optical sampling," Appl. Opt. 26, 4303 (1987).

9.K. Kieu and M. Mansuripur, "All-fiber bidirectional passively mode-locked ring laser," Opt. Lett. 33, 64–66(2008).

10.S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, "Dual-combmodelocked laser," Opt. Express 23, 5521–5531 (2015).

11.T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, "Kerr-lens mode-locked bidirectional dual-comb ring laserfor broadband dual-comb spectroscopy," Optica 3, 748 (2016).

12.R. Liao, H. Tian, W. Liu, R. Li, Y. Song, and M. Hu, "Dual-comb generation from a single laser source: principlesand spectroscopic applications towards mid-IR—A review," J. Phys. Photonics 2, 042006 (2020).

13.S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, "Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser," Science (2017).

14.S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T.Südmeyer, U. Keller, and P. Thomann, "Fully stabilized optical frequency comb with sub-radian CEO phase noise from aSESAM-modelocked 15-μm solid-state laser," Opt. Express 19, 24171 (2011).

15.T. D. Shoji, W. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, "Ultra-low-noisemonolithic mode-locked solid-state laser," Optica 3, 995 (2016).

16.M. Kowalczyk, ?. Sterczewski, X. Zhang, V. Petrov, Z. Wang, and J. Sotor, "Dual‐Comb Femtosecond Solid‐StateLaser with Inherent Polarization‐Multiplexing," Laser Photonics Rev. 15, 2000441 (2021).

17.X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, "Picometer-resolution dual-combspectroscopy with a free-running fiber laser," Opt. Express 24, 21833–21845 (2016).

 

 

昊量微信在線客服

昊量微信在線客服

版權所有 © 2025上海昊量光電設備有限公司 備案號:滬ICP備08102787號-3 技術支持:化工儀器網 管理登陸 Sitemap.xml

北条麻妃99精品青青久久| 国产精品成人一区二区| 亚洲av成人精品毛片| 麻豆免费精品视频| 日本免费成人网| 日本成a人片在线观看| 日韩女优视频免费观看| 51国产偷自视频区视频| 亚洲一级高清| 国产精品三级网站| 青青草.com| 自拍偷拍亚洲综合| a视频免费观看| 国产毛片久久久| 国产精品视频区1| www.女人的天堂.com| 一级精品视频在线观看宜春院 | 成人在线小说| 欧亚洲嫩模精品一区三区| 国产精品成人免费观看| 婷婷综合久久| 欧美激情专区| 国产91大片| 亚洲欧美欧美一区二区三区| 欧美亚一区二区三区| 欧洲亚洲成人| 91九色在线免费视频| 肥女人的一级毛片| 日韩欧美福利视频| 精品亚洲永久免费| 亚洲免费播放| 日本a级片在线观看| 蜜桃视频在线观看网站| 在线区一区二视频| 国产无码精品在线播放| 天天综合精品| 欧美视频小说| jizz在线观看视频| 亚洲欧美日韩高清| 午夜性色福利视频| 久久综合av免费| 催眠调教后宫乱淫校园| 噜噜噜天天躁狠狠躁夜夜精品| 57pao成人国产永久免费| 6699久久国产精品免费| 1区2区3区欧美| 在线观看免费黄色网址| 免费成人三级| 成人免费视频网站入口| 宅男宅女性影片资源在线1| 日韩视频在线观看一区二区| 国产精品久久久久久无人区| 国产精品88888| 亚洲国产午夜精品| 久久91视频| 国产精品久久视频| 日韩男人天堂| 在线亚洲免费视频| 中文字幕精品视频在线观看| 麻豆成人在线观看| 国产色视频在线播放| 日韩在线精品强乱中文字幕| 91在线中文字幕| 中文字幕在线中文字幕二区| 亚洲第一页在线| 午夜视频免费看| 国产精品传媒入口麻豆| 男人的午夜天堂| 三区四区不卡| 一区二区三区的久久的视频| heyzo一区| 91av在线视频观看| 91av入口| 日韩精品一区二区三区视频| 人人妻人人澡人人爽人人欧美一区| 久久免费精品国产久精品久久久久| 波多野结衣福利| 亚洲激情五月| 国产www免费| 久久精品嫩草影院| 999国内精品视频在线| 国产小视频在线播放| 中文字幕v亚洲ⅴv天堂| 成人欧美色图| 欧美伊人久久久久久久久影院 | 国内精品国产成人国产三级粉色 | 国产毛片一区| 成年人黄色片视频| youjizzjizz亚洲| 久久精品久久精品国产大片| 国产盗摄在线观看| 日韩资源在线观看| 免费网站看黄yyy222| 欧美三电影在线| 国产av精国产传媒| 国产精品乱码一区二三区小蝌蚪| 成人免费黄色小视频| 欧美在线视屏| 欧美视频在线播放一区| 亚洲午夜免费| 国产v亚洲v天堂无码| 日本在线免费| 97香蕉超级碰碰久久免费的优势| av免费看大片| 国产午夜精品理论片a级探花| 欧美一级黄色带| 一本久道久久综合中文字幕 | 伊色综合久久之综合久久| 国产乱码精品一区二区三区日韩精品| 超碰在线无需免费| 日本精品久久中文字幕佐佐木| 作爱视频免费观看视频在线播放激情网| 亚洲欧美日韩直播| 日本一卡2卡三卡4卡网站| 欧美久久久影院| 美女免费观看一区二区三区| 五月天网站亚洲| 91九色蝌蚪91por成人| 国产精品私人影院| 国产成人在线免费视频| 91亚洲国产成人精品一区二三| www.av免费| 狠狠色丁香久久婷婷综合丁香| 女人被狂躁c到高潮| 国产一区二区你懂的| 亚洲高清av一区二区三区| 亚洲精品电影| 国产高潮免费视频| 久久婷婷蜜乳一本欲蜜臀| 中文字幕乱码人妻综合二区三区| 九九99久久精品在免费线bt| 日本一区免费在线观看| 一二区成人影院电影网| 精品在线视频一区二区| 成人片免费看| 国产一区二区三区无遮挡| 亚洲最大网站| 九9re精品视频在线观看re6| 久久爱91午夜羞羞| 精品国产一区二区三区麻豆免费观看完整版 | 中文字幕在线观看欧美| 99在线精品观看| 久草视频在线资源站| 成人教育av在线| 精品无码免费视频| 91在线看国产| 日韩精品1区2区| 国产欧美综合在线观看第十页| 国产午夜在线播放| 日本一区免费视频| 午夜一级黄色片| 亚洲欧美区自拍先锋| 国产伦理吴梦梦伦理| 亚洲国产日韩一级| 日韩欧美国产另类| 中文字幕综合网| 国产精品国产一区二区三区四区| 一级女性全黄久久生活片免费| 国产毛片毛片毛片毛片毛片| 亚洲国产综合人成综合网站| 不卡视频在线播放| 日本乱码高清不卡字幕| 欧美 日韩 国产 成人 在线 91| 欧美丝袜一区二区| 四虎成人免费观看在线网址| 制服丝袜亚洲精品中文字幕| 性感美女视频一二三| 欧美在线视频日韩| 久草视频国产| 日韩av网站在线| jizzjizzjizz亚洲女| 精品国产一区二区三区久久久狼| 在线观影网站| 精品成人影院| 亚洲精品88| 激情久久综合| 99999精品视频| 亚洲成人tv| 日韩女优在线视频| 美腿丝袜一区二区三区| 加勒比精品视频| 精品在线亚洲视频| 精品人妻在线播放| 综合激情成人伊人| 日本黄视频在线观看| 欧美日本一区二区| 精品国产美女福利到在线不卡| 亚洲第一精品久久忘忧草社区| 成人免费网址在线| 欧美精品电影在线| 成人看片免费| 久久资源av| 麻豆一区二区麻豆免费观看| 日本成人黄色网| 99精品热视频只有精品10| 在线看片中文字幕| 久久亚洲精华国产精华液 | 狠狠色丁香久久婷婷综合丁香| 久久久久黄色片| 亚洲欧洲性图库| 91精品国自产在线偷拍蜜桃| 欧美成人精品福利| 国产经典视频一区| 欧美一区第一页| 91破解版在线观看| 青青草原国产免费| 欧美激情另类| 无码人妻精品一区二区三应用大全| 懂色中文一区二区在线播放| 夜夜躁日日躁狠狠久久av| 一本色道综合亚洲| 黄色电影网站在线观看| 久久999免费视频| 羞羞的视频在线看| 亚洲欧美在线网| 国产图片一区| 五月天婷婷在线观看视频| 激情综合色播激情啊| 欧美一区二区三区不卡视频| 欧美日韩一二三四五区| 嫩草www视频在线观看高清| 欧美日韩第一页| av福利导福航大全在线| 欧美日韩一区二区三区电影| 中文在线日韩| 免费看黄色aaaaaa 片| 91丨九色porny丨蝌蚪| 午夜精品一区二区三| 精品国产欧美一区二区| 中文在线天堂库| 97久草视频| 精品一区二区男人吃奶| 国产精久久久久| 波多野结衣在线一区| 精品乱子伦一区二区| 亚洲国产精品va在线| 日本福利片高清在线观看| 国产嫩草一区二区三区在线观看| 色愁久久久久久| 182在线视频| 国产亚洲欧美在线| 久草免费福利视频| 久久精品国产精品亚洲| 日本aa在线| 日本一区二区三区四区在线观看| 精品不卡一区| 嘿嘿视频在线观看| 亚洲欧美另类小说视频| 91av福利| 97久久久久久| 成人精品三级| 五月天激情视频在线观看| 国产精品1区2区| 亚洲毛片欧洲毛片国产一品色| 精品一区二区三区电影| 日本韩国在线视频爽| 中文字幕乱码一区二区三区| 精品二区视频| 国产精品xxxx喷水欧美| 欧美精品成人一区二区三区四区| 麻豆传媒在线视频| 精品一区二区不卡| 国产精品精品| 免费又黄又爽又色的视频| 一本大道综合伊人精品热热| 福利片免费在线观看| 99久久99久久| 久久人体视频| 久久国产精品波多野结衣| 91精品福利视频| 久草电影在线| 欧美一区二区三区精美影视| 欧美激情第8页| 伊人国产在线观看| 欧美精品一级二级三级| 牛牛影视精品影视| 一区二区在线观看网站| 免费在线亚洲欧美| 亚洲无码久久久久| 日韩欧美www| 香港伦理在线| 青草视频在线观看视频| 六月丁香婷婷色狠狠久久| a天堂中文在线观看| 在线观看国产精品91| 欧美激情20| 福利片一区二区三区| wwwwww.欧美系列| 国产麻豆麻豆| 国产精品三级网站| 国产成人精品免费视| 97成人资源站| 欧美日韩高清一区二区| 国产高清视频在线观看| 国产一级大片免费看| 激情六月婷婷综合| 一区二区三区免费视频网站| 久久久久久亚洲精品不卡| 日韩有吗在线观看| 免费人成又黄又爽又色| 亚洲人成在线播放网站岛国 | 欧美午夜精品理论片a级按摩| 青青草视频在线观看| 日本道在线视频| 国产做a爰片久久毛片| 一二三四日本中文字幕| 8x海外华人永久免费日韩内陆视频| 91麻豆精品激情在线观看最新 | 欧美伦理91| 三级黄色片免费看| 亚洲三级电影网站| 丁香花高清视频完整版在线观看| 久久久一本精品99久久精品| 亚洲精品男同| av男人天堂av| 欧美激情亚洲另类| 成人高潮视频| 成熟的女同志hd| 日韩欧美中文一区二区| 黑人玩欧美人三根一起进| www.99热这里只有精品| 激情五月激情综合网| 99久9在线视频| 国产精品久久综合av爱欲tv| 日韩极品一区| 成人h动漫精品一区二区下载| 亚洲偷熟乱区亚洲香蕉av| 日韩另类视频| 少妇大叫太粗太大爽一区二区| 色一情一伦一子一伦一区| 国产三级电影在线| 777米奇影视第四色| 欧美国产激情一区二区三区蜜月| 成人亚洲在线观看| 西游记1978| 国产成人av福利| 污网站在线观看| 国产在线精品二区| 日韩成人精品视频| 影音先锋中文资源站| 国产综合在线观看视频| 国产精品激情电影| 亚洲AV无码成人片在线观看| 97视频在线免费观看| 日本精品三区| 亚洲视频在线观看免费视频| 欧美人与物videos| 香蕉久久夜色精品国产使用方法 | 视频免费一区二区| 久久亚洲AV无码| 亚洲人成网7777777国产| 99tv成人影院| 成人免费毛片东京热| 日韩第一页在线| 91视频成人| 亚洲成人生活片| 亚洲美女又黄又爽在线观看| 亚洲毛片在线免费| 好吊色视频在线观看| 国产亚洲欧美日韩精品| 2020国产精品极品色在线观看| 精品无码人妻一区二区三区| 一区二区三区视频观看| 视频在线亚洲| 久热这里只有精品6| 久久中文字幕视频| 亚洲国产高清在线观看| 日本少妇毛茸茸高潮| 日韩精品中文在线观看| va天堂va亚洲va影视| 国产一级av毛片| 日韩一区二区欧美| 色婷婷狠狠五月综合天色拍| 国产成人无码一区二区在线播放| 九九热精品视频国产| 欧美丝袜一区| 99久久久国产精品无码网爆| 国产精品国产三级国产aⅴ浪潮 | 日韩精品一卡| 北条麻妃一二三区| 国产日韩欧美在线| 视频一区二区国产| 强开小嫩苞一区二区三区视频| 国产一区二区香蕉| 日日摸夜夜添夜夜添亚洲女人| 国产精品入口麻豆免费观看| www.成人av.com| 久久精品国产一区二区三| 九九视频九九热| 欧美日本亚洲| 不卡电影免费在线播放一区| 成人综合av| 国产精品第12页| 精品久久久久久久久久久久| 日本在线视频中文有码| 在线视频第一页| 亚洲日本欧美日韩高观看| 色88888久久久久久影院| 国产免费不卡视频| 成人欧美在线观看 |